内切酶

跳转到: 导航, 搜索
Bkebs.jpg

内切酶(incision enzyme),即限制性核酸内切酶。亦称限制性核酸酶。 这是一类能从DNA分子中间水解磷酸二酯键,从而切断双链DNA的核酸水解酶。它们不同于一般的脱氧核糖核酸酶(DNase),它们的切点大多很严格,要求专一的核苷酸顺序

Bkebt.jpg

——识别顺序。长期以来,难以深入研究的DNA大分子,借此可以切割成特定的小片段来分析。限制性核酸酶的发现,为基因结构、DNA碱基顺序分析和基因工程的研究开辟了途径。为此,W.阿尔伯,H.史密斯和D.内森斯三人共同获得了1978年诺贝尔生理学或医学奖。

一种能催化多核苷酸的链断裂的酶,只对脱氧核糖核酸内一定碱基序列中某一定位置发生作用,把这位置的链切开。通过内切酶可以把某一个遗传基因切下来,若再连在别的细胞的遗传基因上,便可使这细胞具有新的遗传特性。内切酶的发现和采用,使基因工程成为可能。  

内切酶的分类

内切酶主要分成三大类。第一类内切酶能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。这类限制性内切酶在DNA重组技术或基因工程中没有多大用处,无法用于分析DNA结构或克隆基因。这类酶如EcoB、EcoK等。

第二类内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。由于这类限制性内切酶的识别和切割的核苷酸都是专一的。所以总能得到同样核苷酸顺序的DNA片段,并能构建来自不同基因组的DNA片段,形成杂合DNA分子。因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、9个、10个和11个核苷酸的。如果识别位置在DNA分子中分布是随机的,则识别4个核苷酸的限制性内切酶每隔46(4096)个核苷酸就有一个切点。人的单倍体基因组据估计为3×199核苷酸,识别4个核苷酸的限制性内切酶的切点将有(3×109/2.5×102)约107个切点,也就是可被这种酶切成107片段,识别6个核苷酸的限制性内切酶也将有(3×109/4×103)约106个切点。

第二类内切酶的识别顺序是一个回文对称顺序,即有一个中心对称轴,从这个轴朝二个向“读”都完全相同。这种酶的切割可以有两种方式。一是交错切割,结果形成两条单链末端,这种末端的核苷酸顺序是互补的,可形成氢键,所以称为粘性末端。如EcoRI的识别顺序为:

↓ |

5’……GAA | TTC……3’

3’……CTT | AAG……5’

| ↑

垂直虚线表示中心对称轴,从两侧“读”核苷酸顺序都是GAATTC或CTTAAG,这就是回文顺序(palindrome)。实线剪头表示在双链上交错切割的位置,切割后生成5’……G和AATTC……3’、3’……CTTAA和G……5’二个DNA片段,各有一个单链末端,二条单链是互补的,可通过形成氢键而“粘合”。另一种是在同一位置上切割双链,产生平头末端。例如HaeⅢ的识别位置是:

5’……GG↓CC……3’

3’……CC↓GG……’

在箭头所指处切割,产生的两个DNA片段是:

5’……GG CC……3’

3’……CC GG……5’

有时候两种限制性内切酶的识别核苷酸顺序和切割位置都相同,差别只在于当识别顺序中有甲基化的核苷酸时,一种限制性内切酶可以切割,另一种则不能。例如HpaⅡ和MspⅠ的识别顺序都是5’……GCGG……3’,如果其中有5’-甲基胞嘧啶,则只有HpaⅡ能够切割。这些有相同切点的酶称为同切酶或异源同工酶(isoschizomer)。

第三类内切酶也有专一的识别顺序,但不是对称的回文顺序。它在识别顺序旁边几个核苷酸对的固定位置上切割双链。但这几个核苷酸对则是任意的。因此,这种限制性内切酶切割后产生的一定长度DNA片段,具有各种单链末端。这对于克隆基因或克隆DNA片段没有多大用处。  

内切酶用于克隆PCR

克隆PCR产物的方法之一,是在PCR产物两端设计一定的限制酶切位点,经酶切后克隆至用相同酶切的载体中。但实验证明,大多数限制酶对裸露的酶切位点不能切断。必须在酶切位点旁边加上一个至几个保护碱基,才能使所定的限制酶对其识别位点进行有效切断。

酶切位点(内切酶的识别序列)要加在引物的5'端,为保证PCR产物能被限制性内切酶的识别且有效的酶切,一般在引物的5'端酶切位点侧边加上保护碱基。

具体为:5'-保护碱基+酶切位点+引物序列-3'

详细可参见,如下图:

关于“内切酶”的留言: Feed-icon.png 订阅讨论RSS

目前暂无留言

添加留言
个人工具
名字空间
动作
导航
推荐工具
功能菜单
工具箱